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Abstract—Multi-label text classification is the machine learn-
ing task wherein each document is tagged with multiple
labels, and this task is uniquely challenging due to high
dimensional features and correlated labels. Such text classifiers
need to be regularized to prevent severe over-fitting in the high
dimensional space, and they also need to take into account label
dependencies in order to make accurate predictions under un-
certainty. Many classic multi-label learning algorithms focus on
incorporating label dependencies in the model training phase
and optimize for the strict set-accuracy measure. We propose a
new pipeline which takes such algorithms and improves their
F1-performance with careful training regularization and a new
prediction strategy based on support inference, calibration
and GFM, to the point that classic multi-label models are
able to outperform recent sophisticated methods (PDsparse,
SPEN) and models (LSF, CFT, CLEMS) designed specifically
to be multi-label F-optimal. Beyond performance and practical
contributions, we further demonstrate that support inference
acts as a strong regularizer on the label prediction structure.
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I. INTRODUCTION

Multi-label text classification is challenging, first due to
label sets that exhibit complex dependency structures: Text
labels such as election and politics are dependent
variables in general, so independent predictions per label
(Binary Relevance method) is unlikely to work well [1]. La-
bels can be many, so learning approaches dealing explicitly
with the exponential number of label subsets (e.g. the Pow-
erSet method [1] ) are infeasible; even when feasible, they
suffer from scarce data and limited label subsets observed
during training. In recent years, there has been an growing
interest in developing multi-label methods that are capable
of modeling label dependencies in the meantime avoiding
exponential computational complexity. Examples include
probabilistic classifier chains [2], conditional random fields
[3], and conditional Bernoulli mixtures [4]. And the second
challenge is that the commonly used bag-of-words feature
representation is high dimensional and sparse. For example,
the WISE dataset has 301,561 unigram features. If ngram
features are further included, the feature size would grow
dramatically. Model training without careful regularization
can lead to severe over-fitting. This is especially a problem
for high-complexity classifiers.

Formally, in a multi-label classification problem, we are
given a set of label candidates L = {1, 2, ..., L}. Every

datapoint x ∈ RD matches a subset of labels y ⊆ L, which
is often also written in the form of a binary label vector
y ∈ {0, 1}L, with each bit yl indicating the presence or
absence of the corresponding label. The goal is to build
a classier h : RD 7→ {0, 1}L which maps an instance to
a subset of labels. The label subset y can be of arbitrary
size (written as |y| = ||y||1). The subset accuracy measure,
which is usually reported, gives for each test datapoint a
score of 1 if the exact label set is predicted and 0 otherwise
and it is usually optimized by maximum likelihood over sets.

In practice however, and particularly in industry, the
F-measure, which gives partial rewards for subset predictions
based on overlap with the correct subset, is much better
suited for many multi-label tasks than strict subset-accuracy.
For example, in a medical note, a patient may present with
multiple illnesses or undergo a procedure with multiple
billing codes; predicting five out of six codes correctly is
a considerable help to medical billing systems. Multi-label
competitions organized by industrial companies, such as the
Yelp business categorization[5] and the Greek Media[6],
employ F-measure for evaluation. In this paper, we focus
on medium-to-large scale multi-label prediction problems
with up to hundreds of labels, such as medical billing codes,
movie genres, review objects, patent classification and news
categorization. These problems are of particular importance
in practice and research: 1) large and complex enough that
scalability and regularization need to be considered in the
algorithm design; 2) not so large as to prohibit interesting
algorithms due to computational requirements; 3) where
partially correct predictions are valuable.

We demonstrate how to regularize model complexity
during training, and how to regularize the label search space
during prediction. This separation allows any multi-label
algorithm to give optimal F-measure predictions, so long
as it outputs label-set joint probabilities. Specifically, we
regularize the classifier during training using the Elastic-net
(L1+L2) penalty in order to reduce model complexity.At
prediction time, we apply support inference to restrict the
label space to sets encountered in the training set, use Iso-
tonic Regression to produce calibrated marginal probabilities
and use the General F-measure Maximizer (GFM) to make
F1-optimal predictions, see Figure 1.

F-measure and Optimal F1 Predictions. The F-measure
is by far the most widely used metric for label/tag prediction



Figure 1: Proposed Pipeline

because it assigns partial credit to “almost correct” answers
and handles label imbalance well. Let y be the ground truth
label vector, and let y′ be the predicted label vector. The
F1-measure for an instance is defined as

F (y,y′) =
2
∑L

l=1 yly
′
l∑L

l=1 yl +
∑L

l=1 y
′
l

(1)

which is the harmonic mean between precision and recall.
The reported “instance-F1” is the average of F1-measure
values over test instances.

Making an optimal prediction based on a trained model
to maximize the F1-measure cannot be done, in general,
by ranking all labels by their relevance and selecting the
top labels. It may seem surprising, in light of the existence
of many methods which make predictions by thresholding
marginal label probabilities. However, one can see why
making predictions based on label probabilities alone is
suboptimal: many metrics, including F1-measure, are not
decomposable over individual labels, and thus in general
require the classifier to take into account label dependencies
through joint label probability estimation. There exist a
few methods which explicitly take into account the F1-
measure during training [7], [8], [9], but the popular methods
that provide a joint estimation in the form of p(y|x) are
trained by standard maximum likelihood estimation with-
out considering the F1-measure as an objective. For such
methods, it is still possible to use an F1-optimal prediction
strategy post-training, that is, output y∗ which maximizes
the expected F1-measure:

y∗ = arg max
y′

∑
y

p(y|x) · F (y,y′) (2)

The General F-measure Maximizer (GFM) [10] is an
efficient algorithm that finds the F1-optimal prediction for
a given instance based on some probability estimations.
The GFM algorithm does not work directly with a joint
estimation p(y|x), but rather, some L2 marginal distributions
(defined more precisely in Section III-B). The paper [10]
proposed two ways of obtaining these L2 marginals (or prob-
abilities per instance): 1) a model which directly estimates
L2 marginals from data, and 2) the use of a probabilistic joint
estimator p(y|x) and sampling to generate the required L2

probabilities. We find that option 1) is very difficult, perhaps
unsolvable, although it is indeed appealing as a theoretical
exercise. We instead develop an efficient solution based on
2) with a critical change: after training the joint estimator
p(y|x), we derive the required L2 marginals using support

inference and Calibration. These marginals are then fed
into GFM to produce the F1-optimal prediction (Figure 1).

II. MULTI-LABEL CLASSIFIERS

For each multi-label classifier considered, we describe its
probabilistic formulation p(y|x) and its standard argmax
prediction method, which gives arg maxy p(y|x). It is worth
noting that the argmax prediction, although very common,
only provides the optimal prediction for the exact-set accu-
racy measure, but not for the F1-measure [10], [11].

Binary Relevance (BR) [1] assumes that all labels are
independent and thus the joint over all labels is a product of
marginals, see (3). This independence assumption simplifies
both training and prediction: L binary classifiers (logistic
regressions) are trained, one for each label; the argmax
prediction simply predicts each label independently.

p(y|x) =

L∏
l=1

p(yl|x) (3)

Probabilistic Classifier Chain (PCC) [2] decomposes
the joint density estimator into a product of conditionals
using the chain rule, in (4). During training, one logistic
regression is trained for each label based on both features
and all previous labels; it models label dependency, but
the pre-set order of labels in the decomposition is critical.
The exact argmax prediction is generally intractable. Beam
search is often used as an approximate argmax prediction
procedure [12], which is applied in our experiments.

p(y|x) = p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1) (4)

Pair-wise Conditional Random Field (CRF) [3] defines
a log-linear model with potential functions for feature-label
pairs and label-label pairs.

p(y|x) =
1

Z(x)
exp{

L∑
l=1

D∑
d=1

wldxd1[yl = 1]

+

L∑
l=1

L∑
m=1

(wlm11[yl = 0, ym = 0] + wlm21[yl = 0, ym = 1]

+wlm31[yl = 1, ym = 0] + wlm41[yl = 1, ym = 1])} (5)

where Z(x) is the normalization constant, and all w are
estimated weights. All weights are trained jointly using
maximum likelihood estimation. Both computing the par-
tition function Z(x) and the exact argmax predictions are
intractable, as an exponential number of label combinations
are involved. [3] suggests using support inference to solve
the intractability issues: the idea is to restrict y values
only to label combinations observed in the training set
when computing scores and probabilities. While the authors
propose support inference only as an approximation, we
think it is actually the main reason CRF works well: support
inference adds strong regularization and dependency effects.

Conditional Bernoulli Mixtures (CBM) [4] represents
the joint as a mixture of K components, each with in-
dependent label classifiers, shown in (6). The multi-class



classifier (a multi-nomial logistic regression) π decides the
mixing coefficient for each mixture component. Inside each
component, the joint is factorized into marginals, estimated
by L binary classifiers b (binary logistic regressions). Both
the multi-class classifier and the binary classifiers are trained
jointly by EM algorithm. The exact argmax can be computed
efficiently using dynamic programming.

p(y|x) =

K∑
k=1

π(z = k|x)

L∏
l=1

b(yl|x, z = k) (6)

III. TRAINING AND PREDICTION FOR OPTIMAL F

We propose a classifier training and prediction pipeline
which works with all the existing multi-label classifiers de-
scribed above. It adds careful regularization to the classifier
training and employs a new prediction strategy. With these
enhancements, most multi-label classifiers studied here are
able to outperform recent other methods (see Table V).

A. Training Regularization

L1 Regularization. L2 regularization is the most com-
monly used regularization techniques for text classifiers.
However, because the number of model parameters (for the
classifiers described above) grows at least linearly with the
number of labels and the number of bag-of-words/ngrams
features, and both of which are large on multi-label text
data, using only L2 regularization leads to a large number
of model parameters and hence over-fitting.

One remedy for the high dimensionality is to apply the
L1 regularization to perform feature selection by shrinking
some irrelevant feature weights to zero. However, L1 alone
can often pick only one out of many highly correlated
features, possibly hurting the generalization — so L2 is still
necessary for spreading weights across correlated features.
In our pipeline we regularize all model training (except CRF,
which is difficult) with the elastic-net regularization [13],
which combines both L1 and L2 regularization, in the form
λ{α||w||1 + (1−α)||w||22}, to get the best of both worlds .

B. Prediction Strategy

At prediction time, the task is to find the Bayes optimal
prediction y∗ that gives the highest expected F1-measure by
formula (2) under the predictive distribution p(y|x).

GFM: optimal prediction for F1-measure. The General
F-Measure Maximizer (GFM) algorithm [10] is an exact
and efficient algorithm for computing y∗ in Θ(LT 2) time,
where T is the average number of labels per instance.
However, the GFM algorithm does not work directly with a
joint estimation p(y|x) provided by standard classifiers, but
rather, some marginal distributions of the form

p(yl = 1, |y| = s | x), ∀l, s ∈ {1, ..., L} (7)

where |y| stands for the number of relevant labels in y.
This formula can be read as, for example, “the probability

Table I: Datasets Characteristics
BIBTEX IMDB OHSUMED RCV1 WISE WIPO

domain bkmark genre medical news articles patent
source Mulan crawled* MEKA* Mulan WISE2014 HRSVM
labels 159 27 23 101 203 188

label sets 2,058 2,122 1,042 494 3,536 155
features 1,836 27,228 16,344 47,236 301,561 74,435
instances 7,395 34,157 13,929 6,000 64,857 1,710

cardinality 2.40 2.52 1.66 3.23 1.45 4.00
inst/label 112 2537 1007 188 463 36

Note: cardinality = average number of labels per instance; inst/label = the average
number of training instances per label. Except for IMDB, all datasets are publicly
available. “*”= we processed the source documents and recomputed all-unigram
feature values, because the published feature matrix did not include all unigrams and
the pre-processing was unclear.

of the given document having s = 5 relevant labels and
yl =election is one of them”. Obviously, there are (no
more than) L2 probabilities in this form, per instance.

Support Inference. [10] proposes to sample from the
joint p(y|x) and then compute the GFM input probabilities
based on the samples. However sampling is ineffective for
large L and low-confidence (”flat”) joint density that spreads
probability mass over many label sets. Our proposed way of
producing the GFM L2 input probabilities from the joint
p(y|x) is through support inference, which only considers
those label combinations y in the training set and marginal-
izes over their probabilities. This is more efficient than
sampling, and also provides some additional regularization
effect on the label structures, as demonstrated later.

At first glance, support inference seems to have the
limitation of not considering unseen label combinations. In
reality this limitation only appears during marginalization,
and is largely mitigated by GFM in the prediction step. It
is not hard to show that although support inference only
considers existing combinations, support inference + GFM
can output unseen combinations. Thus support inference
provides a regularized probability estimation by only assign-
ing probability mass to observed combinations, and GFM
takes this regularized probability estimation as the input and
outputs F optimal prediction, which could potentially be an
unobserved label combination. We observe this strategy to
work remarkably well for many classifiers and datasets.

Calibration. It is often the case that the probability esti-
mations given by the classifiers are uncalibrated, meaning
that the probabilities do not align well with the actual predic-
tion accuracy. One can further calibrate these probabilities
on a validation set using some calibration method such as
Isotonic Regression [14]. We find that calibrating the L2

marginal probabilities produced by support inference helps
GFM make better predictions. Putting together, our proposed
overall prediction strategy is to first run support inference
to compute p(y|x) for each y in the training set, and
then marginalize over them to get the required L2 marginal
probabilities, and then run Isotonic Regression to calibrate
these probabilities, and finally run GFM on the calibrated
L2 probabilities to make a prediction.



Table II: F-measure on test w/ and w/o L1(L), Support
Inference(S), GFM(G) and Calibration(C)

Data Model Standard SG L LS LG LSG LSCG

B
IB

T

BR 37.8 44.5 39.8 44.4 40.2 45.4 48.1
CRF\ L1 - - - 46.5 - 49.4 49.5

PCC 37.4 45.3 39.5 45.0 40.1 47.3 48.2
CBM 44.0 45.9 45.3 46.9 40.4 49.5 50.4*

IM
D

B

BR 59.4 61.8 59.6 59.7 61.0 61.4 63.8
CRF\ L1 - - - 63.0 - 66.6 67.1*

PCC 59.6 63.9 60.1 60.2 61.5 62.8 64.4
CBM 61.6 65.1 62.2 62.2 64.8 65.2 66.2

O
H

SU

BR 60.2 67.9 63.6 68.0 64.3 69.1 71.0
CRF\ L1 - - - 66.4 - 69.6 70.5

PCC 62.5 70.1 64.7 68.4 65.8 70.4 72.1
CBM 68.7 70.3 69.5 70.3 65.4 71.7 72.6*

R
C

V
1 BR 72.1 73.7 73.8 74.6 74.9 75.1 76.1

CRF\ L1 - - - 74.4 - 75.8 76.1
PCC 71.0 73.6 72.7 72.8 74.3 74.1 74.4
CBM 76.6 77.3 77.3 78.5 77.9 79.2* 78.7

W
IS

E

BR 68.0 77.3 72.8 79.0 73.0 79.3 80.1
CRF\ L1 - - - 77.7 - 79.0 79.4

PCC 70.7 76.0 74.6 76.7 77.1 78.0 -
CBM 77.9 78.6 79.8 79.8 73.6 80.3 81.5*

W
IP

O

BR 63.4 71.2 69.5 73.2 70.0 74.0 68.0
CRF\ L1 - - - 70.3 - 72.2 72.5

PCC 68.8 71.5 70.2 70.4 70.6 72.3 54.6
CBM 63.0 70.8 69.6 72.5 70.3 74.3* 71.3

Note:bold: best in row; *: best in dataset; “-”: N/A (CRF requires S); “CRF\L1”:
CRF w/o L1.

IV. EXPERIMENTAL RESULTS & ANALYSIS

Datasets and Experiment Setup. The multi-label text
datasets used in experiments are shown in Table 1. We adopt
the given train/test split whenever it is provided; otherwise
we use a random 20% of the data as the test set. Hyper pa-
rameter tuning for all algorithms is done by cross validation
on the training set and F1-measure on the test set is reported.
For methods involving random initializations or sampling,
reported results are averaged over 3 runs. When applying L1
regularization, we use L1 penalty together with the basic L2
penalty in the elastic-net form λ{α||w||1+(1−α)||w||22}, and
we tune the overall strength λ and the L1 ratio α. When L1
penalty is not included, we only keep L2 penalty by setting
α = 0 and we only tune λ.

A. Analysis: L1 Regularization

First we analyze the regularization effects of L1 penalty
during training. The experiment results are summarized in
Table II. The letters “L, S, G” stand for “L1”, “support
inference” and “GFM”, respectively. Each column uses a
different subset of these techniques. The “Standard” column
does not use any of these. It follows the convention that uses
only L2 penalty to regularize logistic regression learners,
trains each model until full convergence, and performs
argmax prediction during prediction. This column serves as
a baseline. Comparing the column “LSG” with the column
“SG”, we can see that overall introducing some L1 penalty
improves performance on 5 out of 6 datasets—BIBTEX,
OHSUMED, RCV1, WISE, WIPO, but not IMDB. Also the
difference L1 makes is a function mainly of the dataset, and
less of the classifier (CRF is excluded due to the absence of
L1).

Table III: Model size and feature used

Data

BR CBM
L2 L1L2 L1L2 L2 L1L2 L1L2

model feature model model feature model
size(MB) used size size(MB) used size

BIBT 7 100% 26% 135 100% 4%
IMDB 20 66% 21% 355 99% 10%
OHSU 10 53% 34% 177 68% 6%
RCV1 48 70% 12% 910 77% 2%
WISE 1.4(G) 14% 1% 13(G) 24% <1%
WIPO 294 42% 2% 6G 77% 2%

Note: Percentages of the L2 model/feature size after adding L1 in BR and CBM.
Base L2 models use all features.

Each dataset has some intrinsic properties such as the
number of relevant documents per label, the diversity of the
topics, the total number of documents and the total number
of features, that dictate how many features have to be used in
order to explain the given labels/topics well and how many
model parameters can be reliably estimated based on the
given dataset size, and these factors in turn influence how
much improvement L1 feature selection can bring in.

Apart from improving test F1 performance, L1 also
shrinks the model sizes massively. The model size is mea-
sured by the disk space the model occupies. Table III com-
pares the sizes of models trained with only L2 versus models
trained with both L1 and L2 penalty. Generally, adding L1
shrinks models to no more than 10% of its original sizes for
CBM. On some datasets, such as RCV1, WISE and WIPO,
the shrunk CBM models are only about 1%. Interesting,
if we look at the total number of features selected by the
classifiers, the reduction in feature size is not as dramatic
as the reduction in model size. This is in direct contrast
with binary classification, where these two reductions mostly
agree. By looking into the trained multi-label classifiers, we
notice that although many features are relevant for some
labels and are thus included in the classifiers, for each
individual label, only a few features actually have non-zero
weights. Thus, although the union of relevant features for
all labels can be large, each label predictor can be a small
model that includes a few features, and the entire multi-label
classifier is therefore quite compact.

B. Analysis: GFM, Support Inference, Calibration

We now analyze the effect of each step in the proposed
prediction strategy. Experiment results are summarized in
Table II. The new letter “C” stands for “Calibration”, and all
others stay the same. The “L” column uses argmax prediction
as described in Section II. Comparing the “L” column with
the “LSCG” column, it is clear that the proposed prediction
strategy performs better than argmax prediction in terms
of F1 for almost all methods on all datasets. Furthermore,
the effect of calibration can be observed by comparing the
“LSCG” column with the “LSG” column. Adding calibration
consistently boosts the performance by 1 percent on all
datasets except WIPO.

The “LG” column only uses GFM predictor but not



Table IV: F-measure on CRF w/ and w/o label-label pair.

BIBT IMDB OHSU RCV1 WISE WIPO
pairwise w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

CRF w/o GFM 46.9 46.5 61.3 63.0 66.1 66.4 73.8 74.4 78.2 77.7 70.7 70.3
CRF w/ GFM 49.4 49.4 66.1 66.6 69.8 69.6 75.8 75.8 79.4 79.0 71.8 72.2

support inference. For each method, we sample 1000 times
based on the estimated joint and use samples to compute
the marginals probabilities required by the GFM predictor,
as described in Section III-B (The CRF numbers are missing
as there is no straight forward way of sampling from CRF).
Comparing “LG” with column “L”, we see that GFM alone
gives some improvement for BR and PCC, but is less
effective for CBM. However, CBM clearly benefits from
GFM in conjunction with support inference.

The “LS” column only uses support inference but not
GFM prediction. We use support inference to restrict the
label combinations to those observed in the training set, and
among them, we pick the one with the highest probability.
Comparing “L” with the “LS” column, we see that adding
the support inference alone consistently improves the test
performance (except for CRF, for which support inference
is always used, as described in Section II). The improvement
is most substantial on BR, which did not estimate any
label dependencies during training, and is relatively small on
CRF, PCC and CBM, which already estimated some label
dependencies during training. Thus support inference acts as
a regularizer on the label structure.

The Role of Support Inference It is known that if CRF as
described in Section II only contains label-feature interaction
but not label-pair interaction, and if the partition function is
computed exactly by summing overall all label combinations
(conceptually), then the resulting model is mathematically
equivalent to BR. In this case, theoretically there is no
need to compute the partition function approximately using
support combinations. So the authors in [3] only use support
inference when CRF contains label pair interactions and
thus the model does not factorize and one has to somehow
compute the partition function approximately. Support infer-
ence there was deemed purely as an approximate inference
procedure. But our results show, perhaps surprisingly, that
support inference in fact helps on BR – in other words, even
if we could compute the CRF partition function exactly, it
is still beneficial to compute it approximately, using support
inference. Table IV shows that CRF without label pair terms
does almost equally well as the one with label pair terms.
This demonstrates support inference as a simple yet powerful
regularizer, besides its original role as an approximation.

V. COMPARISONS WITH RELATED METHODS

Theoretically GFM can produce the Bayesian optimal
prediction given the L2 marginal probability inputs. It may
appear that if the end goal is to produce these L2 proba-
bilities as input to the GFM algorithm, it should be more
straightforward to estimate these L2 probabilities directly
rather than going through a joint estimation first, which by

itself is quite challenging (the joint evolves 2L probabilities
in general). In fact, it is conceptually not hard to derive an
algorithm (called Label Square Functions (LSF)) to estimate
the L2 marginals directly, as suggested in [10]. We can
estimate each p(yl = 1, |y| = s | x) using a binary logistic
regression. Another option is to estimate p(yl = 1|x) with a
binary logistic regression, and then p(|y| = s|x, yl = 1) with
another multinomial logistic regression and then multiply
their probabilities. However, in practice, Table V shows
that this direct estimation approach does not perform well:
directly predicting the number of relevant labels |y| by a
classifier is a very hard and unnatural task.

Besides the BR, PCC, CRF, CBM and LSF models with
logistic regression learners described so far, there also exist
other multi-label methods, some of which are quite effective
for certain metrics. However, once F1-measure is concerned,
most of these other methods lack an explicit probability
estimation, which is indispensable for GFM prediction. One
example is the BR model with linear SVM learners. We
take the widely used Liblinear package [15] for state-of-the-
art linear SVM and Logistic Regression implementations,
with carefully tuned hyper parameters, and notice that the
predictions from the package have much lower F1-measure
compared with our proposed BR + LSCG (see Table V).

The PD-Sparse method [16] is recently proposed for
extremely large scale multi-label classification. It employs
a Dual Fully-Corrective Block-Coordinate Frank-Wolfe al-
gorithm that exploits both primal and dual sparsity to achieve
high efficiency. However, PD-Sparse only computes a non-
probabilistic score for each label and ranks labels by scores.
It does not provide a straightforward way of predicting a
set of labels for each instance. The original implementation
provided by the authors ask the users to provide the desired
number of labels per instance and returns the top labels
with highest scores as predictions. Because the correct
number of labels varies greatly from instance to instance,
predicting a fixed number of labels for all instances results
in sometimes low precision (when the specified number of
labels is more than necessary), sometimes low recall (when
the specified number of labels is less than necessary), and
overall low F1-measure. Since PD-Sparse does not provide
probability estimations, GFM cannot be plugged in to predict
optimal F1. We tried to make the PD-Sparse predictions
more adaptive by tuning the threshold of the label scores
to maximize the F1-measure, but PD-Sparse still performs
much worse than our proposed methods (see Table V).

There are also several neural network based multi-label
classification methods [17], [18], [19], [20]. We run the code
associated with the recently proposed Structured Prediction
Energy Networks (SPEN) [17] with carefully tuned hyper
parameters as suggested by the authors and observe that
SPEN’s performance to be less competitive (see Table V),
possibly due to over-fitting in high dimensional data with
neural network’s high model capacity.



Table V: F-measure comparisons with other methods.

Method BIBT IMDB OHSU RCV1 WISE WIPO
BR SVM + L2 37.8 59.9 60.9 73.4 70.0 64.7
BR SVM + L1 39.3 59.0 63.5 73.0 70.0 68.1
BR LR + L2 38.1 60.0 61.1 72.3 68.6 64.3
BR LR + L1 39.0 60.5 61.4 73.4 70.4 68.7

LIFT 31.5 - 54.4 70.2 - 61.6
SPEN + L2 39.0 61.1 61.7 65.3 - 65.9

PDsparse+L1L2 40.7 62.3 67.3 75.0 74.5 67.5
CFT 23.5 - - 53.5 - 62.7

CLEMS 42.5 - 52.6 72.4 - 67.1
LSF 43.9 59.8 65.0 73.6 76.7 71.1

BR+LSCG† 48.1 63.8 71.0 76.1 80.1 68.0
CRF+LSCG† 49.5 67.1 70.5 76.1 79.4 72.5
CBM+LSCG† 50.4 66.2 72.6 78.7 81.5 71.3

Note: †: our method; ‘-’: indicates failed runs with 56 core and 256GB RAM.

The LIFT algorithm [21] constructs features specific to
each label by conducting clustering analysis on its positive
and negative instances, and then performs training and
testing by querying the clustering results. We run the code
provided by the authors and follow the suggested hyper
parameters and report the results in Table V. LIFT does
not perform well and could not finish on two datasets.

There are several approaches that seek to optimize the
F-measure directly during training. [9] provides an up-to-
date overview on different F-measure maximization meth-
ods. [22] uses a graph-cut algorithm and has poor scala-
bility on high dimensional text datasets. There are three
methods that use a cost-sensitive approach to optimize F-
measure score during training [23], [24], [7]. We tested the
Condensed Filter Tree method (CFT) [23] and the cost-
sensitive label embedding with multidimensional scaling
method (CLEMS) [24] and found both to perform poorly
and their training to be also slow (see Table V). [8] studies F-
measure maximization with conditionally independent label
subsets. This method has a strong assumption which makes
it hard to apply to real data.

VI. CONCLUSION

In this paper our main goal is to develop a pipeline in
order to reuse classic multi-label models to achieve high F1
scores on multi-label text data. We show that most multi-
label classification algorithms can be used in the pipeline as
long as they produce a joint estimator p(y|x). We show that
with careful training regularization and special prediction
strategy based on Support Inference, Calibration and GFM,
these classic methods can outperform recent sophisticated
methods (PDsparse, SPEN) and models (LSF, CFT, CLEMS)
designed specifically to be multi-label F-optimal.
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